Issue 22, 2023

Chemometers: an integrative tool for chemical assessment in multimedia environments

Abstract

We propose novel chemometers – passive equilibrium samplers of, e.g., silicone – as an integrative tool for the assessment of hydrophobic organic compounds in multimedia environments. The traditional way of assessing levels of organic pollutants across different environmental compartments is to compare the chemical concentration normalized to the major sorptive phase in two or more media. These sorptive phases for hydrophobic organic compounds differ between compartments, e.g., lipids in biota and organic carbon in sediments. Hence, comparability across media can suffer due to differences in sorptive capacities, but also extraction protocols and bioavailability. Chemometers overcome these drawbacks; they are a common, universal and well-defined polymer reference phase for sampling of a large range of nonpolar organic pollutants in different matrices like biota, sediment and water. When bringing the chemometer into direct contact with the sample, the chemicals partition between the sample and the polymer until thermodynamic equilibrium partitioning is established. At equilibrium, the chemical concentrations in the chemometers can be determined and directly compared between media, e.g., between organisms of different trophic levels or inhabiting different areas, between organs within an organism or between biotic and abiotic compartments, amongst others. Chemometers hence allow expressing the data on a common basis, as the equilibrium partitioning concentrations in the polymer, circumventing normalizations. The approach is based on chemical activity rather than total concentrations, and as such, gives a measure of the “effective concentration” of a compound or a mixture. Furthermore, chemical activity is the main driver for partitioning, biouptake and toxicity. As an additional benefit, the extracts of the chemometers only require limited cleanup efforts, avoiding introduction of a bias between chemicals of different persistence, and can be submitted to both chemical analysis and/or bioanalytical profiling.

Graphical abstract: Chemometers: an integrative tool for chemical assessment in multimedia environments

Article information

Article type
Feature Article
Submitted
17 Dec 2022
Accepted
08 Feb 2023
First published
24 Feb 2023
This article is Open Access
Creative Commons BY-NC license

Chem. Commun., 2023,59, 3193-3205

Chemometers: an integrative tool for chemical assessment in multimedia environments

E. Rojo-Nieto and A. Jahnke, Chem. Commun., 2023, 59, 3193 DOI: 10.1039/D2CC06882F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements