Issue 25, 2022

Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis

Abstract

Proton exchange membrane water electrolysis (PEMWE) is one of the central technologies to enable the widespread use of intermittent renewable energy, thereby solving the problems caused by the global warming and the energy crisis associated with fossil fuels. Due to the harsh reaction conditions and sluggish kinetics of the four-electron transfer involved oxygen evolution reaction (OER) at the anode, precious metal Ir-based electrocatalysts are necessary to enable active and durable acidic water electrolysis. However, the high price and scarcity of Ir spur intensive research on designing robust OER catalysts with decreased Ir loading. In this review, we provide a systematic review on the recent development of Ir-based OER catalysts, initiated with understanding of the reaction mechanism and the degradation process. Particularly, the adsorbate evolution mechanism (AEM) and lattice oxygen participation mechanism (LOM) are discussed in detail, which then serve as guiding principles for catalyst design. Second, the latest progress of Ir-based catalysts in terms of morphology engineering, heteroatom doping and controllable crystal phase design is summarized, with the real world performance of OER electrocatalysts in practical electrolyzers provided. Finally, we put forward our perspective of challenges and prospects for future development of Ir-based OER catalysts.

Graphical abstract: Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis

Article information

Article type
Review Article
Submitted
02 Dec 2021
Accepted
20 Apr 2022
First published
07 May 2022

J. Mater. Chem. A, 2022,10, 13170-13189

Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis

H. Wu, Y. Wang, Z. Shi, X. Wang, J. Yang, M. Xiao, J. Ge, W. Xing and C. Liu, J. Mater. Chem. A, 2022, 10, 13170 DOI: 10.1039/D1TA10324E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements