Issue 13, 2023

Dynamics of magnetic Janus colloids studied by ultra small-angle X-ray photon correlation spectroscopy

Abstract

The orientation behavior and the translational dynamics of spherical magnetic silica-nickel Janus colloids in an external magnetic field have been studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy at ultra small-angles. For weak applied fields and at low volume fractions, the particle dynamics is dominated by Brownian motion even though the net magnetic moments of the individual particles are aligned in the direction of the field as indicated by the anisotropy in the small-angle scattering patterns. For higher fields the magnetic forces result in more complex structural changes with nickel caps of Janus particles pointing predominantly along the applied magnetic field. The alignment ultimately leads to chain-like configurations and the intensity–intensity autocorrelation functions, g2(q,t), show a second slower decay which becomes more pronounced at higher volume fractions. A direction dependent analysis of g2(q,t) revealed a faster than exponential decay perpendicular to the field which is related to the sedimentation of magnetically ordered domains. The corresponding velocity fluctuations could be decoupled from the diffusion of particles by decomposing g2(q,t) into advective and diffusive contributions. Finally, the particle dynamics becomes anisotropic at higher volume fractions and strong magnetic fields. The derived translational diffusion coefficients indicate slower particle dynamics perpendicular to the field as compared to the parallel direction.

Graphical abstract: Dynamics of magnetic Janus colloids studied by ultra small-angle X-ray photon correlation spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2022
Accepted
16 Nov 2022
First published
16 Nov 2022
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2023,19, 2311-2318

Dynamics of magnetic Janus colloids studied by ultra small-angle X-ray photon correlation spectroscopy

T. Zinn, L. Sharpnack and T. Narayanan, Soft Matter, 2023, 19, 2311 DOI: 10.1039/D2SM01334G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements