Rheology and tribology of chitosan/Acacia gum complex coacervates
Abstract
Acacia gum (Gum Arabic; GA) and chitosan (CTS) form complex coacervates in acidic environments, providing a polymer-rich aqueous material with interesting bio-lubricant properties. We investigate the interplay of the tribology and rheology of these coacervates, demonstrating that they dramatically reduce the friction coefficient between lubricated soft model surfaces as compared to solutions of the individual polymers. We characterize the phase separation behavior using microscopy, electrophoretic mobility and thermogravimetric analysis. The macroscopic rheological behaviour is predominantly viscous and ranges from weakly to strongly shear thinning: viscosity levels and strength of shear thinning increase with decreasing ionic strength, but no apparent yield stress or predominant elasticity were observed even in the absence of salt. Conversely, friction coefficients measured between soft and rough surfaces increase with a rise in ionic strength and can be scaled onto a Stribeck-type master curve across varying ionic strength and pH in the mixed and hydrodynamic lubrication regimes.