Issue 37, 2022

Tubulation and dispersion of oil by bacterial growth on droplets

Abstract

Bacteria on surfaces exhibit collective behaviors, such as active turbulence and active stresses, which result from their motility, growth, and interactions with their local surroundings. However, interfacial deformations on soft surfaces and liquid interfaces caused by active growth, particularly over long time scales, are not well understood. Here, we describe experimental observations on the emergence of tubular structures arising from the growth of rod-shaped bacteria at the interface of oil droplets in water. Using microfluidics and timelapse microscopy, the dimensions and extension rates of individual tubular structures as well as bulk bio-aggregate formation are quantified for hundreds of droplets over 72 hours. Tubular structures are comparable in length to the initial droplet radius and are composed of an outer shell of bacteria that stabilize an inner filament of oil. The oil filament breaks up into smaller microdroplets dispersed within the bacterial shell. This work provides insight into active stresses at deformable interfaces and improves our understanding of microbial oil biodegradation and its potential influence on the transport of droplets in the ocean water column.

Graphical abstract: Tubulation and dispersion of oil by bacterial growth on droplets

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2022
Accepted
04 Sep 2022
First published
07 Sep 2022

Soft Matter, 2022,18, 7217-7228

Tubulation and dispersion of oil by bacterial growth on droplets

V. Hickl and G. Juarez, Soft Matter, 2022, 18, 7217 DOI: 10.1039/D2SM00813K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements