Issue 34, 2022

Activity mediated globule to coil transition of a flexible polymer in a poor solvent

Abstract

Understanding the role of self-propulsion on the conformational properties of active filamentous objects has relevance in biology. In this work, we consider a flexible bead-spring model for active polymers with both attractive and repulsive interactions among the non-bonded monomers. The activity for each monomer works along its intrinsic direction of self-propulsion which changes diffusively with time. We study its kinetics in the overdamped limit, following quenching from good to poor solvent conditions. We observe that with low activities, though the kinetic pathways remain similar, the scaling exponent for the relaxation time of globule formation becomes smaller than that for the case with no activity. Interestingly, for higher activities when self-propulsion dominates over interaction energy, the polymer conformation becomes extended coil-like. There, in the steady state, the variation of the spatial extension of the polymer, measured via its gyration radius, shows two completely different scaling regimes: the corresponding Flory exponent ν changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a self-avoiding walk. This can be explained by an interplay among the three energy scales present in the system, viz., the “ballistic”, thermal, and interaction energy.

Graphical abstract: Activity mediated globule to coil transition of a flexible polymer in a poor solvent

Article information

Article type
Paper
Submitted
21 Mar 2022
Accepted
16 Jul 2022
First published
19 Jul 2022

Soft Matter, 2022,18, 6392-6403

Activity mediated globule to coil transition of a flexible polymer in a poor solvent

S. Paul, S. Majumder and W. Janke, Soft Matter, 2022, 18, 6392 DOI: 10.1039/D2SM00354F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements