Issue 14, 2022

Quantifying cooperative flow of fat crystal dispersions

Abstract

We quantify the cooperative flow behaviour of fat crystal dispersions (FCDs) upon varying crystallization conditions. The latter enabled altering the multiscale microstructure of the FCDs, from the nanometer-sized platelets, and the dispersed fractal aggregates, up to the strength of the mesoscopic weak-link network. To the goal of characterizing strongly-confined flow in these optically-opaque materials, we acquire high-resolution rheo-magnetic-resonance-imaging (rheo-MRI) velocimetry measurements using an in-house developed 500 μm gap Couette cell (CC). We introduce a numerical fitting method based on the fluidity model, which yields the cooperativity length, ξ, in the narrow-gap CC. FCDs with aggregates sizes smaller than the confinement size by an order of magnitude were found to exhibit cooperativity effects. The respective ξ values diverged at the yield stress, in agreement with the Kinetic Elasto-Plastic (KEP) theory. In contrast, the FCD with aggregates sizes in the order of the gap size did not exhibit any cooperativity effect: we attribute this result to the correspondingly decreased mobility of the aggregates. We foresee that our optimized rheo-MRI measurement and fitting analysis approach will propel further similar studies of flow of other multi-scale and optically-opaque materials.

Graphical abstract: Quantifying cooperative flow of fat crystal dispersions

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2022
Accepted
14 Mar 2022
First published
15 Mar 2022
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2022,18, 2782-2789

Quantifying cooperative flow of fat crystal dispersions

K. W. Milc, J. A. Dijksman, J. P. M. van Duynhoven and C. Terenzi, Soft Matter, 2022, 18, 2782 DOI: 10.1039/D2SM00233G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements