Issue 17, 2022

The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels

Abstract

Additive manufacturing (AM), in its little more than 40 years of existence, has already established itself as a technology with enormous potential for several fields, especially the ones that require complex, high resolution, small structures, such as tissue engineering. This field has been especially attracted to the most recent AM evolution, 4D printing, due to its ability to create structures responsive to external stimuli. Among the range of materials that are simultaneously suitable for 4D printing and biological uses, poly(N-isopropylacrylamide) (pNIPAM) stands out. pNIPAM presents exceptional characteristics such as a low critical solution temperature (LCST) close to the human physiological temperature and biocompatibility with several cell types. However, these characteristics are greatly affected by processing parameters. In this work, pNIPAM hydrogels were manufactured by AM using digital light processing; the printing temperature was varied between 5, 10 and 15 °C to analyze how it affects the hydrogels’ final properties. The impact on hydrogels was analyzed by differential scanning calorimetry (DSC), swelling, deswelling and reswelling analyses, scanning electron microscopy (SEM) images, and compression tests. Based on our results increasing the production temperature of the hydrogels by 10 °C led to a decrease of more than 50% in the maximum swelling capacity, approximately 10% increase in water retention, and 6.5 °C variation in the LCST. The justification for such behaviour lies in the increase of the crosslinking rate and thickening of the external layer of hydrogels, which prevents the free movement of water from its interior.

Graphical abstract: The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels

Article information

Article type
Paper
Submitted
09 Feb 2022
Accepted
04 Apr 2022
First published
19 Apr 2022

Soft Matter, 2022,18, 3422-3429

The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels

D. M. Solis and A. Czekanski, Soft Matter, 2022, 18, 3422 DOI: 10.1039/D2SM00201A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements