Issue 23, 2022

Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study

Abstract

Mitochondrial populations in cells are maintained by cycles of fission and fusion events. Perturbation of this balance has been observed in several diseases such as cancer and neurodegeneration. In fission yeast cells, the association of mitochondria with microtubules inhibits mitochondrial fission [Mehta et al., J. Biol. Chem., 2019, 294, 3385], illustrating the intricate coupling between mitochondria and the dynamic population of microtubules within the cell. In order to understand this coupling, we carried out kinetic Monte Carlo (KMC) simulations to predict the evolution of mitochondrial size distributions for different cases; wild-type cells, cells with short and long microtubules, and cells without microtubules. Comparisons are made with mitochondrial distributions reported in experiments with fission yeast cells. Using experimentally determined mitochondrial fission and fusion frequencies, simulations implemented without the coupling of microtubule dynamics predicted an increase in the mean number of mitochondria, equilibrating within 50 s. The mitochondrial length distribution in these models also showed a higher occurrence of shorter mitochondria, implying a greater tendency for fission, similar to the scenario observed in the absence of microtubules and cells with short microtubules. Interestingly, this resulted in overestimating the mean number of mitochondria and underestimating mitochondrial lengths in cells with wild-type and long microtubules. However, coupling mitochondria's fission and fusion events to the microtubule dynamics effectively captured the mitochondrial number and size distributions in wild-type and cells with long microtubules. Thus, the model provides greater physical insight into the temporal evolution of mitochondrial populations in different microtubule environments, allowing one to study both the short-time evolution as observed in the experiments (<5 minutes) as well as their transition towards a steady-state (>15 minutes). Our study illustrates the critical role of microtubules in mitochondrial dynamics and coupling microtubule growth and shrinkage dynamics is critical to predicting the evolution of mitochondrial populations within the cell.

Graphical abstract: Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2022
Accepted
08 May 2022
First published
11 May 2022

Soft Matter, 2022,18, 4483-4492

Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study

S. Choudhury, V. Ananthanarayanan and K. G. Ayappa, Soft Matter, 2022, 18, 4483 DOI: 10.1039/D2SM00155A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements