Issue 19, 2022

Electrically modulated relaxation dynamics of pre-stretched droplets post switched-off uniaxial extensional flow

Abstract

Droplets are known to elongate in extensional flow and exhibit capillary instabilities following flow cessation. Under several practical scenarios, where the deformed drops are exposed to electrified environments, the interplay between capillary and electric forces can further modulate the capillary-driven instability that may lead to novel drop evolution, which has not yet been explored. In the present study, we probe the transient droplet deformation under combined electrohydrodynamic and extensional flows, with a particular focus on the relaxation dynamics in a post-elongation phase, as the external flow field is withdrawn while the electric field remains on. Based on pre-relaxed droplet morphology and electric field strength, the drops appear to relax faster or slower, leading to a steady-state or a plethora of breakup events. The slightly deformed drops relax into stable prolate or oblate shape depending on the electrophysical properties of the fluid pairs. On the other hand, under large deformation limit, our results reveal that in the post-elongation phase, the electric field may either stabilize the droplet or may enforce its breakup primarily via two modes: mid-pinching and end-pinching. We have shown that the post-relaxation events can be mapped into the relevant parametric phase space as a function of the relative strengths of the various forcing parameters as well as geometric parameters. These results present new avenues of droplet manipulation in industrial and microfluidic applications by utilizing unique connectivity between the relaxation kinematics and imposed electrical forcing, a paradigm that has hitherto remained unaddressed.

Graphical abstract: Electrically modulated relaxation dynamics of pre-stretched droplets post switched-off uniaxial extensional flow

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2021
Accepted
23 Apr 2022
First published
25 Apr 2022

Soft Matter, 2022,18, 3678-3697

Electrically modulated relaxation dynamics of pre-stretched droplets post switched-off uniaxial extensional flow

N. Behera and S. Chakraborty, Soft Matter, 2022, 18, 3678 DOI: 10.1039/D1SM01813B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements