Issue 18, 2022

Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences

Abstract

For the first time site-specific doping of silver into a spherical Au25 nanocluster has been achieved in [Au19Ag6(MeOPhS)17(PPh3)6] (BF4)2 (Au19Ag6) through a dual-ligand coordination strategy. Single crystal X-ray structural analysis shows that the cluster has a distorted centered icosahedral Au@Au6Ag6 core of D3 symmetry, in contrast to the Ih Au@Au12 kernel in the well-known [Au25(SR)18] (R = CH2CH2Ph). An interesting feature is the coexistence of [Au2(SPhOMe)3] dimeric staples and [P–Au–SPhOMe] semi-staples in the title cluster, due to the incorporation of PPh3. The observation of only one double-charged peak in ESI-TOF-MS confirms the ordered doping of silver atoms. Au19Ag6 is a 6e system showing a distinct absorption spectrum from [Au25(SR)18], that is, the HOMO–LUMO transition of Au19Ag6 is optically forbidden due to the P character of the superatomic frontier orbitals.

Graphical abstract: Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Jan 2022
Accepted
12 Mar 2022
First published
15 Mar 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 5148-5154

Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences

W. Shi, Z. Guan, J. Li, X. Han and Q. Wang, Chem. Sci., 2022, 13, 5148 DOI: 10.1039/D2SC00012A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements