Issue 12, 2022

Heterofunctional epoxy support development for immobilization of fructosyltransferase from Pectinex® Ultra SP-L: batch and continuous production of fructo-oligosaccharides

Abstract

In this study, a heterofunctional carrier was obtained by modification of a macroporous polystyrene ion exchange resin with primary amino groups (Purolite® A109) with epichlorohydrin, in view of achieving covalent immobilization of fructosyltransferase (FTase) from a complex enzyme mixture, Pectinex® Ultra SP-L, that is responsible for the synthesis of functionally active fructo-oligosaccharides (FOS). A two-step immobilization protocol, comprising the physical adsorption of FTase performed at pH 4 and subsequent buffer exchange to promote the establishment of covalent bonds at pH 9, was proposed for obtaining a highly active immobilized preparation (243 IU g−1 of support). Additionally, this protocol provided development of a preparation with 20 times more prominent expressed activity of FTase compared to the commercial preparation with predominant pectinase activity. The obtained immobilized preparation was further tested in batch and air-lift reactor systems for FOS synthesis, yielding 52.8% and 54.7% of FOS in total carbohydrates, respectively. Finally, the continuous production of FOS in the air-lift reactor was established for 7 days, with an average FOS yield of 52.5%. Accordingly, it is demonstrated that the immobilization process enabled the development of preparations with exceptional potential for industrial implementation.

Graphical abstract: Heterofunctional epoxy support development for immobilization of fructosyltransferase from Pectinex® Ultra SP-L: batch and continuous production of fructo-oligosaccharides

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2022
Accepted
10 Aug 2022
First published
17 Aug 2022

React. Chem. Eng., 2022,7, 2518-2526

Heterofunctional epoxy support development for immobilization of fructosyltransferase from Pectinex® Ultra SP-L: batch and continuous production of fructo-oligosaccharides

M. Veljković, M. Simović, K. Banjanac, M. Ćorović, A. Milivojević, M. Milivojević and D. Bezbradica, React. Chem. Eng., 2022, 7, 2518 DOI: 10.1039/D2RE00182A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements