Issue 49, 2022

Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized via Buchwald–Hartwig amination

Abstract

Lithium detection is of great significance in many applications. Lithium-sensing compounds with high selectivity are scarce and, if any, complicated to synthesize. We herein report a novel yet simple compound that can detect lithium ions in an organic solvent through changes in absorbance and fluorescence. Naphthalene functionalized with 1-aza-12-crown-4 (1) was synthesized via one step from commercially available 1-bromonaphthalene through Buchwald–Hartwig amination. In order to obtain a structure–property relationship, we also synthesized two other compounds that are structurally similar to 1, wherein the compounds 2 and 3 include an imide moiety (an electron acceptor) and do not include a 1-aza-12-crown-4 unit, respectively. Upon the addition of lithium ions, compound 1 displayed a clear isosbestic point in the absorption spectra and a new peak in the fluorescence spectra, whereas the compounds 2 and 3 indicated miniscule and no spectroscopic changes, respectively. 1H NMR titration studies and the calculated optimized geometry from density functional theory (DFT) indicated the lithium binding on the aza-crown. The calculated limit of detection (LOD) was 21 μM. The lithium detection with 1 is selective among other alkali metals (Na+, K+, and Cs+). DFT calculation indicated that the lone pair electrons in the nitrogen atom of 1 is delocalized yet available to bind lithium, whereas the nitrogen lone pair electrons of 2 showed significant intramolecular charge transfer to the imide acceptor, resulting in a high dipole moment, and thus were unavailable to bind lithium. This work elucidates the key design parameters for future lithium sensors.

Graphical abstract: Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized via Buchwald–Hartwig amination

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2022
Accepted
02 Nov 2022
First published
08 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 31976-31984

Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized via Buchwald–Hartwig amination

H. Kim and B. Koo, RSC Adv., 2022, 12, 31976 DOI: 10.1039/D2RA05746H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements