Issue 43, 2022

Pillar[n]arene–calix[m]arene hybrid macrocyclic structures

Abstract

To reserve planar chirality, enhance molecular recognition, and build advanced self-assemblies, hybrid macrocyclic hosts containing rigid pillar[n]arene and flexible calix[m]arene were designed, prepared and investigated for interesting applications. This review summarizes and discusses different synthetic strategies for constructing hybrid macrocyclic structures. Pillar[n]arene dimer with rigid aromatic double bridges provided the possibility of introducing calix[m]arene cavities, where the planar chirality was reserved in the structure of pillararene. The capacity for molecular recognition was enhanced by hybrid macrocyclic cavities. Interestingly, the obtained pillar[n]arene–calix[m]arene could self-assemble into “channels” and “honeycomb” in both the solid state and solution phase as well as donate the molecular architecture as the wheel for the formation of mechanically interlocked molecules, such as rotaxane. In addition, the pillar[n]arene and calix[m]arene could also be coupled together to produce pillar[n]arene embeded 1,3-alternate and cone conformational calix[m]arene derivatives, which could catalyze the oxidative polymerization of aniline in aqueous solutions. Except for building hybrid cyclophanes by covalent bonds, weak supramolecular interactions were used to prepare pillar[n]arene–calix[m]arene analogous composites with other pillar-like pillar[n]pyridiniums and calix-like calix[m]pyrroles, exhibiting reasonable performances in enhancing molecular recognition and trapping solvent molecules.

Graphical abstract: Pillar[n]arene–calix[m]arene hybrid macrocyclic structures

Article information

Article type
Review Article
Submitted
16 Aug 2022
Accepted
19 Sep 2022
First published
03 Oct 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 28185-28195

Pillar[n]arene–calix[m]arene hybrid macrocyclic structures

Z. Liu, B. Li, L. Song and H. Zhang, RSC Adv., 2022, 12, 28185 DOI: 10.1039/D2RA05118D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements