Non-wettable/wettable coatings floating on liquid metal marbles for anti-combination, reversible conductivity transformation and magnetic motion in solution†
Abstract
Novel non-wetted/wetted floatable polyethylene/Cu and porous-Ni/Cu (P–Ni/Cu) coatings have been designed and fabricated for anti-combination of gallium-based liquid metal alloy (LM) marbles in solutions. Both coated LM pairs show strong anti-combination resistances even under a large extrusion ratio. Additionally, both coatings also show strong bonding forces with LMs and are floatable on the surfaces of LMs. Driven by electric or magnetic fields, floatable polyethylene/Cu or P–Ni/Cu coatings on LM surfaces are guided by these external fields, and then restore the original arrangement by the surface tension of the LMs and buoyancy of the coatings themselves after removing external fields, by which these coated LM marble or LM marble pair exhibit the revisable conductivity transitions and magnetic driven motion applications. This work should present a new way for the clustering and functional application of LMs in solutions.