Issue 42, 2022

Novel thiazole derivatives incorporating phenyl sulphonyl moiety as potent BRAFV600E kinase inhibitors targeting melanoma

Abstract

Novel thiazole derivatives possessing phenyl sulfonyl moiety were designed and synthesized as B-RAFV600E kinase inhibitors based on the clinically-approved anticancer drug, dabrafenib. All target compounds showed significant inhibition of B-RAFV600E kinase enzyme at nanomolar levels. Compounds 7b and 13a revealed excellent B-RAFV600E inhibitory activity, superior to that of dabrafenib with IC50 values of 36.3 ± 1.9, 23.1 ± 1.2, and 47.2 ± 2.5 nM, respectively. Moreover, the title compounds were much more selective toward B-RAFV600E kinase than B-RAF wild type. In addition, the most potent compounds were further evaluated for their anticancer activity against B-RAFV600E-mutated and wild type melanoma cells. A positive correlation between the cytotoxic activity and selectivity for B-RAF V600E over B-RAF wild type was clearly observed for compounds 7b, 11c, 13a, and 17. All the screened compounds potently inhibited the growth of WM266.4 melanoma cells with IC50 values in the range from 1.24 to 17.1 μM relative to dabrafenib (IC50 = 16.5 ± 0.91 μM). Compounds 7b, 11a and 11c, 13a, and 17 were much more potent than dabrafenib against B-RAFV600E-mutated WM266.4 melanoma cells. Furthermore, compound 7b suppressed the phosphorylation of downstream ERK1/2 from WM266.4 cells. Also, the docking study revealed the proper orientation and well-fitting of the title compounds into the ATP binding site of B-RAFV600E kinase.

Graphical abstract: Novel thiazole derivatives incorporating phenyl sulphonyl moiety as potent BRAFV600E kinase inhibitors targeting melanoma

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2022
Accepted
13 Sep 2022
First published
27 Sep 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 27355-27369

Novel thiazole derivatives incorporating phenyl sulphonyl moiety as potent BRAFV600E kinase inhibitors targeting melanoma

A. Y. Khormi, Thoraya. A. Farghaly, A. Bayazeed, Y. O. Al-Ghamdi, H. G. Abdulwahab and M. R. Shaaban, RSC Adv., 2022, 12, 27355 DOI: 10.1039/D2RA03624J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements