Issue 26, 2022, Issue in Progress

A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus

Abstract

Control over intracellular release of therapeutic compounds incorporated into nano-carriers will open new possibilities for targeted treatments of various diseases including cancer, and viral and bacterial infections. Here we report our study on mechanoresponsive nano-sized liposomes which, following internalization by cells, achieve intracellular delivery of encapsulated cargo on application of external ultrasound stimulus. This is demonstrated in a bespoke cell reporter system designed to assess free drug in cytoplasm. Biophysical analyses show that drug release is attributable to the action of a mechanoresponsive spiropyran-based compound embedded in the liposomal lipid membrane. Exposure to external ultrasound stimulus results in opening of the molecular structure of the embedded spiropyran, a consequent increase in liposomal lipid membrane fluidity, and size-dependent release of encapsulated model drugs, all pointing to lipid bilayer perturbation. The study hence illustrates feasibility of the proposed concept where intracellular drug release from mechanoresponsive liposomes can be triggered on demand by external ultrasound stimulus.

Graphical abstract: A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2022
Accepted
24 May 2022
First published
06 Jun 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 16561-16569

A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus

R. Catania, D. Onion, E. Russo, M. Zelzer, G. Mantovani, A. Huett and S. Stolnik, RSC Adv., 2022, 12, 16561 DOI: 10.1039/D2RA02307E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements