Issue 13, 2022, Issue in Progress

Template free-synthesis of cobalt–iron chalcogenides [Co0.8Fe0.2L2, L = S, Se] and their robust bifunctional electrocatalysis for the water splitting reaction and Cr(vi) reduction

Abstract

The ease of production of materials and showing multiple applications are appealing in this modern era of advanced technology. This paper reports the synthesis of a pair of novel cobalt–iron chalcogenides [Co0.8Fe0.2S2 and Co0.8Fe0.2Se2] with enhanced electro catalytic activities. These ternary metal chalcogenides were synthesized by a one-step template-free approach via a hexamethyldisilazane (HMDS)-assisted synthetic method. Transient photocurrent (TPC) studies and electrochemical impedance spectra (EIS) of these materials showed free electron mobility. Their bifunctional activities were verified in both the electrochemical oxygen evolution reaction (OER) and in the electrochemical reduction of toxic inorganic heavy metal ions [Cr(VI)] in polluted water. The materials showed robust catalytic ability in the oxygen evolution reaction with minimum possible over potential (345 and 350 mV @ η10) as determined by linear sweep voltammetry and the lower Tafel values (52.4 and 84.5 mV dec−1) for Co0.8Fe0.2Se2 and Co0.8Fe0.2S2 respectively. Surprisingly, both the materials also showed an excellent activity towards electrochemical Cr(VI) reduction to Cr(III). Besides the maximum current achieved for Co0.8Fe0.2S2, a minimum value for the Limit of detection (LOD) was obtained for Co0.8Fe0.2S2 (0.159 μg L−1) compared to Co0.8Fe0.2Se2 (0.196 μg L−1). We tested the durability of catalysts, the critical factor for the prolonged use of catalysts, through the recyclability measurements of these materials as catalysts. Both the catalysts presented outstanding durability and balanced electro catalytic activities for up to 1500 CV cycles, and chronoamperometry studies also confirmed exceptional stability. The enhanced catalytic activities of these materials are ascribed to the free electron movement, evidenced by the increased TPC measured and EIS. Therefore, the template-free synthesis of these electro catalysts containing non-noble metal illustrates the practical approach to develop such types of catalysts for multiple functions.

Graphical abstract: Template free-synthesis of cobalt–iron chalcogenides [Co0.8Fe0.2L2, L = S, Se] and their robust bifunctional electrocatalysis for the water splitting reaction and Cr(vi) reduction

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2022
Accepted
22 Jan 2022
First published
09 Mar 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 7762-7772

Template free-synthesis of cobalt–iron chalcogenides [Co0.8Fe0.2L2, L = S, Se] and their robust bifunctional electrocatalysis for the water splitting reaction and Cr(VI) reduction

M. A. Pandit, D. S. Hemanth Kumar, M. Ramadoss, Y. Chen and K. Muralidharan, RSC Adv., 2022, 12, 7762 DOI: 10.1039/D2RA00447J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements