Hydroboration of isocyanates: cobalt-catalyzed vs. catalyst-free approaches†
Abstract
Hydroboration of isocyanates with HBPin was demonstrated using both catalytic and catalyst-free approaches. In arene solvents, the reactions employed the commercially available and bench-stable Co(acac)2/dpephos (dpephos = bis[(2-diphenylphosphino)phenyl] ether) pre-catalyst and proved chemodivergent, showing the formation of either formamides or N-methylamines, depending on the concentration of HBPin and the reaction conditions used. Catalytic monohydroboration of isocyanates to formamides was found to be highly chemoselective, tolerating alkenes, alkynes, aryl halides, esters, carboxamides, nitriles, nitroarenes and heteroaromatic functionalities. The catalyst-free hydroboration reactions have been demonstrated in neat HBPin. Whereas monohydroboration proved less selective compared with Co(acac)2/dpephos-catalyzed transformations, selective deoxygenative hydroboration of isocyanates to N-methylamines was observed under catalyst-free conditions.