Issue 18, 2022

Copper(ii)-catalyzed direct dehydrative alkynylation of 2H-chromene hemiketals with terminal alkynes to 2,2-disubstituted 2-alkynylated 2H-chromenes

Abstract

The first copper-catalyzed direct dehydrative alkynylation of 2H-chromene hemiketals with terminal alkynes has been uncovered. The use of cheap and readily available CuCl2 as the catalyst allowed the preparation of various 2,2-disubstituted 2-alkynylated 2H-chromenes in moderate to good yields, which compensates for the limitation of the current methods only suited for the synthesis of 2-monosubsituted 2-alkynylated 2H-chromenes.

Graphical abstract: Copper(ii)-catalyzed direct dehydrative alkynylation of 2H-chromene hemiketals with terminal alkynes to 2,2-disubstituted 2-alkynylated 2H-chromenes

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2022
Accepted
08 Apr 2022
First published
11 Apr 2022

Org. Biomol. Chem., 2022,20, 3785-3789

Copper(II)-catalyzed direct dehydrative alkynylation of 2H-chromene hemiketals with terminal alkynes to 2,2-disubstituted 2-alkynylated 2H-chromenes

S. Zheng, Z. Wen, K. Yang, Y. Zeng, L. Chen and J. Deng, Org. Biomol. Chem., 2022, 20, 3785 DOI: 10.1039/D2OB00481J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements