Issue 20, 2022

Methyl group configuration on acyclic threoninol nucleic acids (aTNAs) impacts supramolecular properties

Abstract

We have synthesized acyclic allo-threoninol nucleic acids (allo-aTNAs), artificial xeno-nucleic acids (XNAs) that are diastereomers of acyclic threoninol nucleic acids (aTNAs), and have investigated their supramolecular properties. The allo-aTNAs formed homo-duplexes in an antiparallel manner but with lower thermal stability than DNA, whereas aTNAs formed extremely stable homo-duplexes. The allo-aTNAs formed duplexes with complementary aTNAs and serinol nucleic acid (SNA). The affinities of L-allo-aTNA were the highest for L-aTNA and the lowest for D-aTNA, with SNA being intermediate. The affinities of D-allo-aTNA were the reverse. Circular dichroism measurements revealed that L- and D-allo-aTNAs had weak right-handed and left-handed helicities, respectively. The weak helicity of allo-aTNAs likely explains the poor chiral discrimination of these XNAs, which is in contrast to aTNAs that have strong helical orthogonality. Energy-minimized structures of L-allo-aTNA/RNA and L-allo-aTNA/L-allo-aTNA indicated that the methyl group on the allo-aTNA strand is unfavourable for duplex formation. In contrast, the methyl group on L-aTNA likely stabilizes the duplex structure via hydrophobic effects and van der Waals interactions. Thus, the configuration of the methyl group on the XNA scaffold had an unexpectedly large impact on the hybridization ability and structure.

Graphical abstract: Methyl group configuration on acyclic threoninol nucleic acids (aTNAs) impacts supramolecular properties

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2022
Accepted
04 Mar 2022
First published
07 Mar 2022

Org. Biomol. Chem., 2022,20, 4115-4122

Methyl group configuration on acyclic threoninol nucleic acids (aTNAs) impacts supramolecular properties

K. Murayama, H. Kashida and H. Asanuma, Org. Biomol. Chem., 2022, 20, 4115 DOI: 10.1039/D2OB00266C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements