Issue 35, 2022

strong synergistic effect of the (110) and (100) facets of the SrTiO3 perovskite micro/nanocrystal: decreasing the binding energy of exciton and superb photooxidation capability for Co2+

Abstract

Crystal facet regulation is an effective method for preparing SrTiO3 or other perovskite semiconductor materials with high photochemical catalysis performance. In general, the edge-truncated cube of SrTiO3 micro-nano particles has been widely reported because of the multiple crystal facets exposed at the same time. However, the effect of the (110) facet and the interaction between the (100) and (110) facets on the properties of photo-induced carriers is still not very clear. In this article, we have designed and prepared two edge-truncated cube SrTiO3—a small and large area proportion of the (110) facet, respectively. In addition to the morphological and structural characterization, high-resolution XPS and femtosecond multiphoton transient absorption (fs-TA) spectroscopy were used to detect the atomic vacancy and were applied to confirm the state of carrier transition. The results showed that the larger (110) facet led to two influences—more Sr vacancies and more self-trapping excitons (STEs) with an ultra-low binding energy (Eb = 2.13 meV), about 1.17 meV lower than that of the sample with the smaller (110) facet. In particular, the larger (110) facet also caused a much higher photooxidation performance for Co2+ to Co3+. This study not only enriches the arsenal of SrTiO3 materials but also sheds new insights into the understanding of the synergistic effect essence of the (100) and (110) facets, which could promote the development of new perovskite photocatalytic materials, particularly in the recovery of heavy metals.

Graphical abstract: strong synergistic effect of the (110) and (100) facets of the SrTiO3 perovskite micro/nanocrystal: decreasing the binding energy of exciton and superb photooxidation capability for Co2+

Article information

Article type
Paper
Submitted
30 May 2022
Accepted
09 Aug 2022
First published
30 Aug 2022

Nanoscale, 2022,14, 12875-12884

strong synergistic effect of the (110) and (100) facets of the SrTiO3 perovskite micro/nanocrystal: decreasing the binding energy of exciton and superb photooxidation capability for Co2+

Q. Jia, C. Wang, J. Liu, X. Cai, L. Zhong, G. Yu and D. Duan, Nanoscale, 2022, 14, 12875 DOI: 10.1039/D2NR02977D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements