Issue 13, 2022

Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide

Abstract

We used a systematic approach to shed light on the inherent differences in perylenes, namely monoimides versus diimides, including coplanarity and dipole moment, and their impact on singlet fission (SF) by designing, synthesizing, and probing a full fledged series of phenylene- and naphthalene-linked dimers. Next to changing the functionality of the perylene core, we probed the effect of the spacers and their varying degrees of rotational freedom, molecular electrostatic potentials, and intramolecular interactions on the SF-mechanism and -efficiencies. An arsenal of spectroscopic techniques revealed that for perylene-monoimides, a strong charge-transfer mixing with the singlet and triplet excited states restricts SF and yields low triplet quantum yields. This is accompanied by an up-conversion channel that includes geminate triplet–triplet recombination. Using perylene-diimides alters the SF-mechanism by populating a charge-separated-state intermediate, which either favors or shuts-down SF. Napthylene-spacers bring about higher triplet quantum yields and overall better SF-performance for all perylene-monoimides and perylene-diimides. The key to better SF-performance is rotational freedom because it facilitates the overall excited-state polarization and amplifies intramolecular interactions between chromophores.

Graphical abstract: Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2021
Accepted
11 Mar 2022
First published
14 Mar 2022

Nanoscale, 2022,14, 5194-5203

Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide

I. Papadopoulos, D. Gutiérrez-Moreno, Y. Bo, R. Casillas, P. M. Greißel, T. Clark, F. Fernández-Lázaro and D. M. Guldi, Nanoscale, 2022, 14, 5194 DOI: 10.1039/D1NR08523A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements