Issue 10, 2022

Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker

Abstract

A novel tetratopic metallo-linker, [Ru(tda)(py(PhCOOH)2)2], 1, (tda = 2,2′:6′,2′′-terpyridine-6,6′′-dicarboxylate; py(PhCOOH)2 = (4,4′-(pyridine-3,5-diyl)dibenzoic acid), that is structurally based on one of the most active molecular water oxidation catalysts has been prepared and fully characterized, including single crystal X-ray diffraction. 1 bears geometric similarities to H4TBAPy (H4TBAPy = 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetrabenzoic acid), i.e. the native linker in NU-1000, which offers the possibility to synthesize NU-1000-Ru mixed linker MOFs solvothermally. Mixed linker MOF formation was demonstrated by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM), and Ru linker incorporation confirmed by FT-IR, energy-dispersive X-ray (EDX) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was found that the Ru contents in the final mixed linker MOFs correlate with the amount of Ru linker present during solvothermal synthesis, albeit not in a linear fashion. The cyclic voltammograms (CV) of the mixed linker MOFs are largely dominated by TBAPy-based oxidations with features attributed to 1. Interestingly, Ru linkers near the crystal surface are oxidized directly by interfacial hole transfer form the electrode, while those in the crystal interior can be oxidized indirectly from oxidized TBAPy linkers at more anodic potential. Upon repeated scanning, the CVs show the appearance of new waves that arise from irreversible TBAPy oxidation, as well as from the activation of the Ru-based water oxidation catalyst. Of the materials prepared, the one with the highest Ru content, NU-1000-Ruhigh, was shown to catalyze the electrochemical oxidation of water to dioxygen. The Faradaic efficiency (FE) of the construct is 37%, due to water oxidation being accompanied by oxidative transformations of the TBAPy linkers. Despite the low FE, NU-1000-Ruhigh is still among the best MOF-based water oxidation catalysts, operating by a unique co-linker mediated hole-transport mechanism to supply oxidizing equivalents also to catalysts in the crystal interior.

Graphical abstract: Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2022
Accepted
04 Apr 2022
First published
05 Apr 2022
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 4227-4234

Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker

A. Howe, T. Liseev, M. Gil-Sepulcre, C. Gimbert-Suriñach, J. Benet-Buchholz, A. Llobet and S. Ott, Mater. Adv., 2022, 3, 4227 DOI: 10.1039/D2MA00128D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements