Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

3D microparticles have promising applications in self-assembly, biomedical engineering, mechanical engineering, etc. The shape of microparticles plays a significant role in their functionalities. Although numerous investigations have been conducted to tailor the shape of microparticles, the diversity is still limited, and it remains a challenge to fabricate 3D microparticles with sharp edges. Here, we present a facile approach that combines a folded PDMS channel and orthogonal projection lithography for shaping sharp-edged 3D microparticles. By adjusting the number and the length of channel sides, both regular and irregular polyhedral cross-sections of the folded channel can be obtained. UV light with diverse patterns is applied vertically as the second shape controlling factor. A variety of 3D microparticles are obtained with sharp edges, which are potential templates for micromachining tools and abrasives. Some sharp-edged microparticles are assembled into 2D and 3D mesoscale structures, which demonstrates their prospective applications in self-assembly, tissue engineering, etc.

Graphical abstract: Fabrication of sharp-edged 3D microparticles via folded PDMS microfluidic channels

Page: ^ Top