Issue 11, 2022

Development of an ammonia pretreatment that creates synergies between biorefineries and advanced biomass logistics models

Abstract

A novel ammonia-based pretreatment for densified lignocellulosic biomass was developed to reduce ammonia usage and integrate with viable biomass logistics scenarios. The COmpacted Biomass with Recycled Ammonia (COBRA) pretreatment performed at 100 °C allows >95% conversion of sugarcane bagasse (SCB) carbohydrates into soluble monomeric and oligomeric sugars (glucose and xylose) using industrially relevant 6% glucan loading (∼21% solids loading) enzymatic hydrolysis conditions at reduced enzyme loadings. Pretreatment via COBRA with simultaneous lignin extraction (COBRA-LE) improved Saccharomyces cerevisiae 424A(LNH-ST) metabolic yield from 89% to 97.5% relative to COBRA without delignification, allowing a process ethanol yield of 71.6%. A technoeconomic analysis on SCB biorefining to ethanol in the state of São Paulo, Brazil, compared COBRA to other mature technologies, such as AFEX and steam-explosion. Amongst all scenarios studied, biorefineries based on COBRA-LE pretreatment offered the lowest average minimum ethanol selling price of US$1.45 per gallon ethanol. COBRA pretreatment was subsequently tested on perennial grasses and hardwoods, and >80% total sugar yields were achieved for all cases.

Graphical abstract: Development of an ammonia pretreatment that creates synergies between biorefineries and advanced biomass logistics models

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2022
Accepted
12 Apr 2022
First published
21 Apr 2022

Green Chem., 2022,24, 4443-4462

Author version available

Development of an ammonia pretreatment that creates synergies between biorefineries and advanced biomass logistics models

A. R. C. Morais, J. Zhang, H. Dong, W. G. Otto, T. Mokomele, D. Hodge, V. Balan, B. E. Dale, R. M. Lukasik and L. da Costa Sousa, Green Chem., 2022, 24, 4443 DOI: 10.1039/D2GC00488G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements