Issue 9, 2022

Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction

Abstract

Electrochemical reconstruction is a powerful tool for generating highly active oxygen evolution reaction (OER) catalysts. Utilizing electrochemical reconstruction to fabricate an OER active catalyst based on a hydrogen evolution reaction (HER) catalyst enables the development of a bifunctional catalyst that possesses state-of-the-art HER and OER activity simultaneously. Here we successfully synthesized Fe-doped Ni&Ni0.2Mo0.8N (Fe0.01-Ni&Ni0.2Mo0.8N) on Ni foam and, after rapid electrochemical reconstruction, the Fe-doped Ni&Ni0.2Mo0.8N compound was reconstructed into NiO co-doped with Fe and Mo (Fe0.01&Mo-NiO). The Fe0.01-Ni&Ni0.2Mo0.8N and Fe0.01&Mo-NiO compounds were found to exhibit state-of-the-art HER and OER performance, respectively. Alkaline fresh water/seawater electrolysis was then systematically studied using the two-electrode electrolyzer Fe0.01-Ni&Ni0.2Mo0.8N‖Fe0.01&Mo-NiO. Due to the excellent seawater HER and OER activity of the individual catalysts, the electrolyzer exhibited record-high performance for seawater electrolysis, achieving a current density of 688 mA cm−2 at 1.7 V. Further experiments under quasi-industrial conditions (6 M KOH & seawater, 60 °C) showed that the electrolyzer delivers a current density of 1000 mA cm−2 at the extremely low voltage of 1.562 V, which is only 1.49% higher than that required for fresh water under the same conditions. Stability testing of the electrolyzer showed that it exhibits good durability over 80 h under the harsh industrial conditions. Therefore, the findings in this research promote the development of bifunctional catalysts and address the small performance differences between alkaline fresh water and seawater electrolysis under industrial conditions.

Graphical abstract: Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2022
Accepted
11 Jul 2022
First published
03 Aug 2022

Energy Environ. Sci., 2022,15, 3945-3957

Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction

M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang, S. Song, Q. Zhou, L. Yu, J. Bao, S. Chen and Z. Ren, Energy Environ. Sci., 2022, 15, 3945 DOI: 10.1039/D2EE01094A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements