Issue 5, 2022

Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films

Abstract

A wearable and transparent thermoelectric (TE) hydrogel based on bisulfate transport was demonstrated to record a negative ionic Seebeck coefficient of −25.0 mV K−1, ionic power factor of 9.94 mW m−1 K−2, and an ionic figure of merit of 7.2 at 80% relative humidity and room temperature. The n-type TE hydrogel was made of electronic poly(3,4-ethylenedioxythiophene), ionic poly(2-acrylamido-2-methyl-1-propanesulfonic acid), and biocompatible bisulfate, which was used as a thermally diffusive anion carrier for the first time in TE devices, to realize a soft mixed ionic–electronic conductor. The composition of this hydrogel was precisely controlled by varying the contents of ammonium persulfate and 3,4-ethylenedioxythiophene to afford a transparent and self-healable film that recovered within 15 min after cutting (cut width of ∼35 μm). Bisulfate transport was visualized using an anion detective fluorophore as a tool to intuitively elucidate the Soret effect, in which ion carriers thermodiffuse from hot to cold parts, and to quantify the thermovoltage simultaneously. A flexible band-type TE energy harvester with 20 legs was fabricated to afford a thermovoltage of −2.75 V at a temperature gradient of 5.5 K, and the harvested energy was used to operate a light-emitting diode for the first time in an organic TE module with a small temperature gradient (<10 K). Moreover, a colorful wearable band-type module and photothermal all organic TE device were demonstrated to be effective self-powered body-worn TE harvesters under ambient conditions.

Graphical abstract: Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2022
Accepted
25 Mar 2022
First published
30 Mar 2022

Energy Environ. Sci., 2022,15, 2049-2060

Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films

C. Cho, B. Kim, S. Park and E. Kim, Energy Environ. Sci., 2022, 15, 2049 DOI: 10.1039/D2EE00341D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements