A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components

Abstract

Proton exchange membrane water electrolysis (PEMWE) is the most promising technology for sustainable hydrogen production. However, it has been too expensive to compete with current state-of-the-art technologies due to the high cost of titanium bipolar plates (BPPs) and porous transport layers (PTLs). Here, we report a high-performance, durable and low-cost PEMWE cell with coated stainless steel (ss) BPPs and PTLs. When using uncoated ss components in the PEMWE cell, the cell depolarizes rapidly, reaching 2 V at only 0.15 A cm−2. After the application of non-precious metal coatings of Ti and Nb/Ti on the ss-BPP and ss-PTL, respectively, the current density can be increased by a factor of 13 while maintaining the same performance. Extensive physical and electrochemical characterization supported by pore network modelling shows that the Nb/Ti coating on the ss-PTL leads to efficient water and gas transport at the interface with the anode. The PEMWE cell with coated ss components was evaluated in an accelerated stress test (AST) for more than 1000 h. No sign of Fe contamination in either the membrane or the electrodes is observed at the end of the test. With our results, we demonstrate that PEMWE cells can be manufactured almost entirely in ss, facilitating an unprecedented cost reduction in this technology and advancing the widespread use of green H2.

Graphical abstract: A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2021
Accepted
22 Sep 2021
First published
07 Oct 2021
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2022, Advance Article

A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components

S. Stiber, N. Sata, T. Morawietz, S. A. Ansar, T. Jahnke, J. K. Lee, A. Bazylak, A. Fallisch, A. S. Gago and K. A. Friedrich, Energy Environ. Sci., 2022, Advance Article , DOI: 10.1039/D1EE02112E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements