Issue 6, 2022

Determination and analysis of time series of CFC-11 (CCl3F) from FTIR solar spectra, in situ observations, and model data in the past 20 years above Jungfraujoch (46°N), Lauder (45°S), and Cape Grim (40°S) stations

Abstract

The atmospheric concentration of CFC-11 (CCl3F) has declined in response to the phase-out of its production by the Montreal Protocol. Nevertheless, this atmospheric concentration decline suffered a slow-down around 2012 due to emissions from non-reported production. Since CFC-11 is one of the most important ozone-depleting chlorofluorocarbons (CFCs), its continuous monitoring is essential. We present the CFC-11 total column time series (2000–2020) retrieved in a consistent way from ground-based high-resolution solar absorption Fourier transform infrared (FTIR) spectra. These observations were recorded at two remote stations of the Network for the Detection of Atmospheric Composition Change (NDACC): the Jungfraujoch station (Northern Hemisphere) and the Lauder station (Southern Hemisphere). These time series are new. They were produced using improved line parameters and merged considering the instrument changes and setup modifications. Afterwards, they were compared with Cape Grim station in situ surface observations conducted within the Advanced Global Atmospheric Gases Experiment (AGAGE) network and with total column datasets calculated by the TOMCAT/SLIMCAT 3-D chemical transport model. Trend analyses were performed, using an advanced statistical tool, in order to identify the timing and magnitude of the trend change in both hemispheres. The observations are consistent with the model results and confirm the slowdown in the CFC-11 atmospheric concentration decay, since ≈2011 in the Northern Hemisphere, and since ≈2014 in the Southern Hemisphere.

Graphical abstract: Determination and analysis of time series of CFC-11 (CCl3F) from FTIR solar spectra, in situ observations, and model data in the past 20 years above Jungfraujoch (46°N), Lauder (45°S), and Cape Grim (40°S) stations

Article information

Article type
Paper
Submitted
31 May 2022
Accepted
22 Sep 2022
First published
10 Oct 2022
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2022,2, 1487-1501

Determination and analysis of time series of CFC-11 (CCl3F) from FTIR solar spectra, in situ observations, and model data in the past 20 years above Jungfraujoch (46°N), Lauder (45°S), and Cape Grim (40°S) stations

I. Pardo Cantos, E. Mahieu, M. P. Chipperfield, D. Smale, J. W. Hannigan, M. Friedrich, P. Fraser, P. Krummel, M. Prignon, J. Makkor, C. Servais and J. Robinson, Environ. Sci.: Atmos., 2022, 2, 1487 DOI: 10.1039/D2EA00060A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements