Issue 37, 2022

Dual role of oxygen-related defects in the luminescence kinetics of AlN:Mn2+

Abstract

This study presents the impact of temperature and pressure on AlN:Mn2+ luminescence kinetics. Unusual behavior of Mn2+ optical properties during UV excitation is observed, where a strong afterglow luminescence of Mn2+ occurs even at low temperatures. When the temperature increases, the contribution of the afterglow luminescence is further enhanced, causing a significant increase in the luminescence intensity. The observed phenomena may be explained by an energy diagram in which the ON–VAl complex in AlN:Mn2+ plays a key role. Hence the ON–VAl complex defect in AlN:Mn2+ plays a double role. When the ON–VAl defect is located close to Mn2+ ions, it is responsible for transferring excitation energy directly to Mn2+ ions. However, when the ON–VAl defect complex is located far from Mn2+ ions, its excited state level acts as an electron trap responsible for afterglow luminescence. Additionally, three models have been tested to explain the structure of the emission spectrum and the strong asymmetry between the excitation and emission spectra. From the most straightforward configuration coordinate diagram through the configuration coordinate diagram model assuming different elastic constants in the excited and ground-states ending by a model based on the Jahn–Teller effect. We proved that only the Jahn–Teller effect in the excited 4T1 electronic state with spin–orbit coupling could fully explain the observed phenomena. Finally, high-pressure spectroscopic results complemented by the calculations of Racah parameters and the Tanabe–Sugano diagram are presented.

Graphical abstract: Dual role of oxygen-related defects in the luminescence kinetics of AlN:Mn2+

Article information

Article type
Paper
Submitted
06 Jul 2022
Accepted
28 Aug 2022
First published
07 Sep 2022

Dalton Trans., 2022,51, 14297-14305

Dual role of oxygen-related defects in the luminescence kinetics of AlN:Mn2+

A. Lazarowska, M. Kamiński, N. J. Cherepy, S. Mahlik and R. Liu, Dalton Trans., 2022, 51, 14297 DOI: 10.1039/D2DT02171D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements