Issue 24, 2022

Five coordinated Mn in Ba4Mn2Si2Te9: synthesis, crystal structure, physical properties, and electronic structure

Abstract

We report the synthesis of single-crystals of a new transition metal-containing quaternary chalcogenide, Ba4Mn2Si2Te9, synthesized by the solid-state method at 1273 K. A single-crystal X-ray diffraction study shows that it crystallizes in the orthorhombic crystal system (space group: Pbam) with cell constants of a = 13.4690(6) Å, b = 8.7223(4) Å, and c = 10.0032(4) Å. The asymmetric unit of the structure consists of eight unique crystallographic sites: one Ba, two Mn, one Si, and four Te sites. In this structure, the two Mn sites, Mn(1) and Mn(2), are disordered, each with fractional occupancy of 50%. The short distance of 2.170(3) Å between Mn(1) and Mn(2) implies that both Mn sites are not occupied simultaneously. The Mn atoms show two types of polyhedra: unique Mn(1)Te5 units along with traditional Mn(2)Te4 tetrahedra. The main motifs of the Ba4Mn2Si2Te9 structure are dimeric Si2Te6 units (with Si–Si single bond), Mn(1)Te5, and Mn(2)Te4 polyhedra. The structure can be described as pseudo-two-dimensional if only Mn(1) atoms are present and one-dimensional when only Mn(2) atoms are filled in the structure. The extended 2[Mn(1)Si2Te9]10− layers and 1[Mn(2)Si2Te8]8− chains are separated by Ba2+ cations. The direct bandgap for the polycrystalline Ba4Mn2Si2Te9 sample is 0.6(1) eV, as determined from an optical absorption study consistent with the sample's black color. The resistivity study of the polycrystalline Ba4Mn2Si2Te9 also confirms the semiconducting behavior. The thermal conductivity (κ) values are extremely low and decrease with increasing temperature up to 0.46 W m−1 K−1 at 773 K. The DFT studies suggest that the computed bandgap depends on the magnetic ordering of Mn magnetic moments, and the value varies from ∼0.3–1.0 eV. Relative inter-atomic bond strengths of pertinent atom pairs have been analyzed using the crystal orbital Hamilton populations (COHP).

Graphical abstract: Five coordinated Mn in Ba4Mn2Si2Te9: synthesis, crystal structure, physical properties, and electronic structure

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2022
Accepted
30 May 2022
First published
30 May 2022

Dalton Trans., 2022,51, 9265-9277

Five coordinated Mn in Ba4Mn2Si2Te9: synthesis, crystal structure, physical properties, and electronic structure

S. Yadav, S. Jana, G. Panigrahi, S. K. Malladi, M. K. Niranjan and J. Prakash, Dalton Trans., 2022, 51, 9265 DOI: 10.1039/D2DT01167K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements