Issue 11, 2022

Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors

Abstract

Using a low loading of the iridium(III) complexes [Ir(CF3SO3)(κ2-NSiiPr)2] (1) (NSiiPr = (4-methylpyridin-2-yloxy)diisopropylsilyl) and [{Ir(κ2-NSiMe)2}2(μ-CF3SO3)2] (2) (NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl) in the presence of Et3N, it has been possible to achieve the solventless selective dehydrogenation of formic acid. The best catalytic performance (TOF5 min ≈ 2900 h−1) has been achieved with 2 (0.1 mol%) and Et3N (40 mol% to FA) at 373 K. Kinetic studies at variable temperatures show that the activation energy of the 2-catalyzed process at 353 K is 22.8 ± 0.8 kcal mol−1. KIE values of 1.33, 2.86, and 3.33 were obtained for the 2-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, in the presence of 10 mol% of Et3N at 353 K. These data show that the activation of the C–H bond of FA is the rate-determining step of the process. A DFT mechanistic study for the catalytic cycle involving hydride abstraction from the formate anion by the metal, assisted by a molecule of formic acid, and heterolytic H2 formation has been performed. Moreover, the presence of Ir-formate intermediates was identified by means of NMR studies of the catalytic reactions in thf-d8 at 323 K. In all the cases, the decomposition of the catalyst to give unactive crystalline iridium NPs was observed.

Graphical abstract: Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors

Supplementary files

Article information

Article type
Paper
Submitted
26 Dec 2021
Accepted
03 Feb 2022
First published
08 Feb 2022

Dalton Trans., 2022,51, 4386-4393

Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors

J. Guzmán, A. Urriolabeitia, V. Polo, M. Fernández-Buenestado, M. Iglesias and F. J. Fernández-Alvarez, Dalton Trans., 2022, 51, 4386 DOI: 10.1039/D1DT04335H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements