Issue 14, 2022

Three isostructural hexanuclear lanthanide–organic frameworks for sensitive luminescence temperature sensing over a wide range

Abstract

Temperature sensing plays essential roles in both fundamental research and high-tech applications. In this work, three isomorphic hexanuclear lanthanide metal–organic frameworks (Ln-MOFs), Ln(BPDC-xN) (Ln = Eu3+/Tb3+, x = 0, 1, 2) were prepared based on the cluster-based synthesis strategy with three structurally similar dicarboxylate ligands 4,4′-biphenyldicarboxylic acid (H2BPDC-0N), 6-(4-carboxyphenyl)nicotinic acid (H2BPDC-1N), and [2,2′-bipyridine]-5,5′-dicarboxylic acid (H2BPDC-2N) as the organic linkers. The as-synthesized Ln-MOFs were fully characterized using single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), elemental analysis (EA), and Fourier transform infrared spectra (FT-IR). Using a Eu3+/Tb3+ co-doping approach, Eu0.001Tb0.999(BPDC-xN) (x = 0, 1, 2) were identified as potential ratiometric luminescence thermometers. Since there are two suitable distances between the energy donors and acceptors within the framework for efficient energy transfer, all Eu0.001Tb0.999(BPDC-xN) (x = 0, 1, 2) maintain high relative sensitivity over a wide temperature range from 50 K to 300 K.

Graphical abstract: Three isostructural hexanuclear lanthanide–organic frameworks for sensitive luminescence temperature sensing over a wide range

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2021
Accepted
12 Mar 2022
First published
14 Mar 2022

Dalton Trans., 2022,51, 5426-5433

Three isostructural hexanuclear lanthanide–organic frameworks for sensitive luminescence temperature sensing over a wide range

T. Xia, W. Cao, L. Guan, J. Zhang, F. Jiang, L. Yu and Y. Wan, Dalton Trans., 2022, 51, 5426 DOI: 10.1039/D1DT04190H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements