Issue 14, 2022

Synthetic helical peptide capping strategies

Abstract

Relatively small mimics of interface secondary structures can be used to disrupt protein–protein interactions (PPIs). This strategy is valuable because many PPIs are pivotal in cell biology and contemporary medicinal chemistry. Small peptides tend to have random coil conformations in solution, so the entropy costs are high for them to order into states binding protein receptors. Consequently, peptides constrained in conformations resembling interface secondary structures are favored for enhanced affinities to PPI components. Helices are commonly found at PPI interfaces. The two general strategies that have emerged for imposing helical constraints in probes, capping and stapling, are often confused because both involve formation of macrocyclic rings. This review considers parameters that distinguish capping from stapling. Capping motifs terminate helices and project the adjacent peptide units in non-helical orientations, but stapling enforces helical motifs in ways that enable adjacent peptide fragments to extend helices. There is no evidence that stapling is more effective than capping for helix mimicry, but stapling is used more frequently. This imbalance may be because no strategies have emerged for synthetic C-capping with compact unit; if convenient and effective C-capping strategies were available then capping strategies should be more widely used.

Graphical abstract: Synthetic helical peptide capping strategies

Article information

Article type
Tutorial Review
Submitted
22 Dec 2021
First published
04 Jul 2022

Chem. Soc. Rev., 2022,51, 5795-5804

Synthetic helical peptide capping strategies

J. Whisenant and K. Burgess, Chem. Soc. Rev., 2022, 51, 5795 DOI: 10.1039/D1CS01175H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements