Issue 22, 2022

Growth and characterization of melem hydrate crystals with a hydrogen-bonded heptazine framework

Abstract

In carbon nitride (CN) compounds, hydrogen bonds play a major role in cohesion, in addition to dispersion forces. The crystal structures of CN compounds produced via thermal polymerization are complex, but they possess unique and attractive features. Melem is a well-known building unit of CN compounds such as melon and g-C3N4, which have recently attracted attention as photocatalysts. Melem hydrate (Mh) forms hexagonal prismatic crystals that are sufficiently porous to accommodate small molecules. In this study, we grew and characterized single crystals of Mh and investigated their optical properties and hygroscopicity. By precisely adjusting the hydration conditions, we succeeded in growing a well-formed hexagonal prismatic single crystal of Mh (Mhr) with a length measuring several tens of micrometers. Furthermore, we discovered a parallelogram-shaped Mh single crystal (Mhp), which possessed a different crystal structure and optical properties from those of Mh and melem crystals. Although the crystal structure of Mh was greatly disrupted by dehydration, it exhibited hygroscopicity and could absorb moisture even in air, restoring the crystal structure of Mh. In addition, Mh demonstrated a high photoluminescence quantum yield and long lifetime delayed fluorescence, similar to melem crystal. The high quantum yield of Mh can be attributed to the effect of the strong anchoring of the melem molecule by several hydrogen bonds in the Mh crystal, since the strongly anchored molecule is less likely to undergo radiation-free deactivation due to the small displacement of atomic positions in the excited state after light absorption. The findings obtained in this study shed light not only on the application of CN compounds as photocatalysts, but also on a wider range of applications based on their optoelectronic functions.

Graphical abstract: Growth and characterization of melem hydrate crystals with a hydrogen-bonded heptazine framework

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2022
Accepted
13 May 2022
First published
13 May 2022
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2022,24, 13922-13934

Growth and characterization of melem hydrate crystals with a hydrogen-bonded heptazine framework

T. Dai, H. Kiuchi, H. Minamide, Y. Miyake, H. Inoki, Y. Sonoda, J. Tsutsumi and K. Kanai, Phys. Chem. Chem. Phys., 2022, 24, 13922 DOI: 10.1039/D2CP00691J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements