Issue 8, 2022

Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product

Abstract

Chagas disease is a leading public health problem. More than 8 million people are affected by the disease, which is endemic in 21 countries in Latin America, generating an average annual cost of 7.2 billion dollars per year. The conventional treatment of Chagas disease is carried out by administering the drug benznidazole (BZN), which has caused numerous adverse reactions. Hence, the search for new, more efficient, and less toxic anti-chagasic agents is essential. Recently, chalcones have been researched to propose new therapies against neglected diseases, mainly Trypanosoma cruzi. The objective of this work was to evaluate for the first time the antiproliferative potential of chalcone derived from the natural product on T. cruzi strain Y. The molecular structure of the chalcone was confirmed by spectrometric data. The toxicity of chalcone in LLC-MK2 cells indicated that a concentration of 514.10 ± 62.40 μM was able to reduce cell viability by 50%. Regarding the effect of chalcone on epimastigote forms, an IC50 value of 46.57 ± 9.81 μM was observed; 45.92 ± 8.42 and 16.32 ± 3.41 μM at times of 24, 48 and 72 hours, respectively. The chalcone was able to eliminate trypomastigote forms at all concentrations tested, except for 31.25 μM, with LC50 values of 117.90 ± 12.60 μM, lower than the reference drug BZN (161.40 ± 31. 80 μM). The mechanism of action may be related to the membrane damage provoked by reduction of the mitochondrial potential. The anti-T. cruzi effect can be assigned through some structural aspects of the chalcone as the nitro group (NO2) is present, which can be enzymatically reduced forming a nitro radical, and the presence of methoxyl groups in the A ring of the chalcone. In silico studies showed that the chalcone had a higher affinity for cruzain when compared to BZN and the co-crystallized inhibitor KB2, as it presented a more thermodynamically stable complex in the order of −6.9 kcal mol−1. The pharmacokinetic prediction showed a significant probability of antiprotozoal activity, a good volume of distribution after being absorbed in the intestine, and a low chance of activity in the central nervous system. Therefore, these results suggest that the chalcone can become a potential cruzain enzyme inhibitor with trypanocidal activity.

Graphical abstract: Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2021
Accepted
22 Jan 2022
First published
25 Jan 2022

Phys. Chem. Chem. Phys., 2022,24, 5052-5069

Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product

M. Geysillene Castro Matos, L. P. da Silva, F. Wagner Queiroz Almeida-Neto, E. Machado Marinho, R. Róseo Paula Pessoa Bezerra de Menezes, T. Lima Sampaio, M. Nunes da Rocha, L. Rodrigues Ribeiro, E. Paula magalhaes, A. M. Rodrigues Teixeira, H. S. dos Santos, E. S. Marinho, P. de Lima-Neto, A. M. Costa Martins, N. K. V. Monteiro and M. Machado Marinho, Phys. Chem. Chem. Phys., 2022, 24, 5052 DOI: 10.1039/D1CP04992E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements