Issue 79, 2022

Development of the first non-hydroxamate selective HDAC6 degraders

Abstract

The targeted degradation of histone deacetylase 6 (HDAC6) by heterobifunctional degraders constitutes a promising approach to treat HDAC6-driven diseases. Previous HDAC6 selective degraders utilised a hydroxamic acid as a zinc-binding group (ZBG) which features mutagenic and genotoxic potential. Here we report the development of a new class of selective HDAC6 degraders based on a difluoromethyl-1,3,4-oxadiazole warhead as ZBG.

Graphical abstract: Development of the first non-hydroxamate selective HDAC6 degraders

Supplementary files

Article information

Article type
Communication
Submitted
07 Jul 2022
Accepted
28 Aug 2022
First published
01 Sep 2022

Chem. Commun., 2022,58, 11087-11090

Development of the first non-hydroxamate selective HDAC6 degraders

T. Keuler, B. König, N. Bückreiß, F. B. Kraft, P. König, L. Schäker-Hübner, C. Steinebach, G. Bendas, M. Gütschow and F. K. Hansen, Chem. Commun., 2022, 58, 11087 DOI: 10.1039/D2CC03712B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements