Issue 51, 2022

Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches

Abstract

Single molecule force-spectroscopy techniques have granted access to unprecedented molecular-scale details about biochemical and biological mechanisms. However, the interpretation of the experimental data is often challenging. Computational and simulation approaches (all-atom steered MD simulations in particular) are key to provide molecular details about the associated mechanisms, to help test different hypotheses and to predict experimental results. In this review, particular recent efforts directed towards the molecular interpretation of single-molecule force spectroscopy experiments on proteins and protein-related systems (often in close collaboration with experimental groups) will be presented. These results will be discussed in the broader context of the field, highlighting the recent achievements and the ongoing challenges for computational biophysicists and biochemists. In particular, I will focus on the input gained from molecular simulations approaches to rationalize the origin of the unfolded protein elasticity and the protein conformational behavior under force, to understand how force denaturation differs from chemical, thermal or shear unfolding, and to unravel the molecular details of unfolding events for a variety of systems. I will also discuss the use of models based on Langevin dynamics on a 1-D free-energy surface to understand the effect of protein segmentation on the work exerted by a force, or, at the other end of the spectrum of computational techniques, how quantum calculations can help to understand the reactivity of disulfide bridges exposed to force.

Graphical abstract: Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches

Article information

Article type
Feature Article
Submitted
08 Mar 2022
Accepted
17 May 2022
First published
09 Jun 2022

Chem. Commun., 2022,58, 7110-7119

Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches

G. Stirnemann, Chem. Commun., 2022, 58, 7110 DOI: 10.1039/D2CC01350A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements