Issue 5, 2022

A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity


Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation.

Graphical abstract: A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity

Supplementary files

Article information

Article type
11 Feb 2022
04 Mar 2022
First published
11 Mar 2022
This article is Open Access
Creative Commons BY license

RSC Chem. Biol., 2022,3, 561-570

A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity

R. Pereira, R. L. Flaherty, R. S. Edwards, H. E. Greenwood, A. J. Shuhendler and T. H. Witney, RSC Chem. Biol., 2022, 3, 561 DOI: 10.1039/D2CB00040G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity