Issue 11, 2022

Osteoimmune reaction caused by a novel silicocarnotite bioceramic promoting osteogenesis through the MAPK pathway

Abstract

The host immune response to an implant is a key factor in determining the fate of bone grafts, which is thought to be a regulator of tissue regeneration. Figuring out the effects of the osteoimmune microenvironment on the osteogenesis of bone grafts can be a valuable strategy for their design and can further enhance the healing of bone defects. Our previous study demonstrated that the silicocarnotite (Ca5(PO4)2SiO4, CPS) bioceramic can significantly promote osteogenesis. The aim of this study is to investigate the immune reaction of CPS, the effects of the immune microenvironment on osteogenesis, and the related molecular mechanisms. Compared to hydroxyapatite (Ca10(PO4)6(OH)2, HA), the results showed that CPS could downregulate the pro-inflammatory phenotype and upregulate the anti-inflammatory phenotype, showing the lower levels of TNF-α and increased expression of IL-10. We further found that CPS could regulate the expression of NPPA, EDN1, and MMP9 in RAW 264.7 by RNA sequencing, which may be related to its superiority in osteogenesis. The osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) was subsequently studied in a macrophage-conditioned medium pretreated with CPS, and the medium caused a significant promotion of the osteogenic differentiation of rBMSCs, demonstrating that CPS can generate a favorable immune microenvironment to promote rBMSCs differentiation. In terms of mechanism, CPS in the macrophage-conditioned medium promoted osteogenic differentiation through the MAPK pathway, including ERK1/2, JNK and P38. Our study demonstrated that osteogenic differentiation was influenced by the immune microenvironment generated via the implant, and also presented an effective tool for studying the mechanisms of macrophage polarization as well as functions.

Graphical abstract: Osteoimmune reaction caused by a novel silicocarnotite bioceramic promoting osteogenesis through the MAPK pathway

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2022
Accepted
06 Apr 2022
First published
13 Apr 2022

Biomater. Sci., 2022,10, 2877-2891

Osteoimmune reaction caused by a novel silicocarnotite bioceramic promoting osteogenesis through the MAPK pathway

X. Han, F. Deng, R. Zhu, K. Li, S. Yang, L. Jin, Z. Ma, C. Ning, X. Shi and Y. Li, Biomater. Sci., 2022, 10, 2877 DOI: 10.1039/D2BM00125J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements