Issue 18, 2022

Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection

Abstract

Herein, we describe a simple and cost-effective fabrication of a paper-based SERS substrate by coating poly(diallyldimethylammonium chloride) (PDADMAC) and gold nanostars (AuNSs) on the filter paper using a vacuum filtration system. The paper-based SERS substrates were fabricated and ready to be used within an hour without any complicated equipment or processes. The cationic polymer, PDADAMAC, was pretreated on the filter paper to improve the absorbability of negatively charged AuNSs through electrostatic interaction. The PDADMAC/AuNS paper significantly intensified the SERS signal of 4-mercaptobenzoic acid (4-MBA) compared to that of pure AuNS-coated paper due to the high density of AuNSs absorbed on the SERS substrate. The PDADMAC/AuNS paper substrate provided a SERS enhancement factor (EF) of 1.08 × 107 with a low detection limit of 1 nM 4-MBA. The substrate shows excellent spot-to-spot reproducibility with a relative standard deviation (RSD) of 5.03%, and substrate-to-substrate reproducibility with an RSD of 3.20% for the Raman shift at 1080 cm−1. The paper substrate was then applied for the rapid detection of pesticides with a low detection limit of 0.51 μM (0.13 ppm) for paraquat, and 0.38 μM (0.09 ppm) for thiram, using a handheld Raman spectrometer. The development of this simple and cost-effective paper-based SERS substrate, and its applications for on-site monitoring of pesticides, could be beneficial for food security and environmental safety.

Graphical abstract: Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2022
Accepted
18 Apr 2022
First published
19 Apr 2022

Anal. Methods, 2022,14, 1765-1773

Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection

K. Ponlamuangdee, C. Rattanabut, N. Viriyakitpattana, P. Roeksrungruang, K. Karn-orachai, D. Pimalai and S. Bamrungsap, Anal. Methods, 2022, 14, 1765 DOI: 10.1039/D2AY00236A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements