Issue 14, 2022

Highly efficient peroxidase-like activity of a metal–oxide-incorporated CeO2–MIL(Fe) metal–organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds

Abstract

The illegal addition of melamine to dairy products and the contamination of water with mercury (Hg2+) are serious threats to human health. Hence, herein, a highly sensitive colorimetric sensor for the visual detection of melamine and Hg2+ ions has been developed using a metal–oxide-in-MOF nanomaterial (CeO2–MIL (Fe)) as a peroxidase mimic. Highly mono-dispersed CeO2–MIL (Fe) was synthesised via a facile hydrothermal process. The CeO2–MIL (Fe) exhibited outstanding peroxidase activity, and can catalyze the oxidation of TMB (3,3′,5,5′-tetramethylbenzidine) by H2O2, resulting in the development of blue-coloured oxidation products within 5 min. In the presence of melamine, the H2O2 interacts with melamine to form melamine–H2O2via H-bonding. Due to the uptake of H2O2 by melamine, the catalytic oxidation reaction was halted, and the blue TMB oxidation product became pale. The relative change in the absorption intensity at 652 nm was proportional to the concentration of melamine in the linear range of 0–0.1 μM and the detection limit was found to be 8 nM. Subsequently, when Hg2+ ions were added to the above solution, the Hg2+ ions reacted with melamine via strong covalent bonding to form a Hg2+–melamine covalent complex, causing the release of H2O2, which again strongly oxidised the TMB to give the blue-coloured oxidation product. Furthermore, the comparative change in the absorption intensity at 652 nm was dependent on the concentration of Hg2+ ions in the linear range of 0–6 nM, and a detection limit of 2 nM was achieved. The suggested system has several advantages including greater simplicity, good selectivity, naked-eye detection and cost-effectiveness without using any complicated detection procedure. This technique was successfully utilized to identify melamine in real foods and Hg2+ ions in real water samples, yielding high recovery rates.

Graphical abstract: Highly efficient peroxidase-like activity of a metal–oxide-incorporated CeO2–MIL(Fe) metal–organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2022
Accepted
14 Jun 2022
First published
15 Jun 2022

Analyst, 2022,147, 3234-3247

Highly efficient peroxidase-like activity of a metal–oxide-incorporated CeO2–MIL(Fe) metal–organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds

A. Amalraj, M. Narayanan and P. Perumal, Analyst, 2022, 147, 3234 DOI: 10.1039/D2AN00864E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements