Issue 19, 2022

Raman imaging combined with an improved PCA/algebra-based algorithm to capture microplastics and nanoplastics

Abstract

Raman imaging has advanced recently to be able to directly visualise microplastics and even nanoplastics. However, the generated scanning spectrum matrix, akin to a hyperspectral matrix, is challenging to decode. To this end, herein, logic-based, algebra-based, principal component analysis (PCA)-based, and dual-PCA-based algorithms are compared and combined as a PCA/algebra-based algorithm. Specifically, (i) to increase the signal–noise ratio, multiple images that mapped the multiple characteristic peaks of plastics are merged to cross-check each other. The threshold-based logic algorithm is improved by differentiating the intrinsic peak intensity, using an algebra-based algorithm; (ii) PCA can decode the spectrum matrix to generate PCA spectra and PCA images. The PCA spectra can suggest how to further extract information on plastics to merge the corresponding PCA images to enable the capture of microplastics and nanoplastics, by combining and following up with the algebra-based algorithm, called a PCA/algebra-based algorithm; (iii) dual-PCA analysis is employed to guide and extract the multiple PCA spectra towards image merging, to validate the PCA/algebra-based algorithm. We also show that the score percentages of the eigenvalues of PCA can be used to estimate the size amount of the microplastics and nanoplastics in the scanning area, and how to treat the reversed peaks of the PCA spectrum. Overall, the improvement of the algorithms can lead to more effective decoding of the spectrum matrix.

Graphical abstract: Raman imaging combined with an improved PCA/algebra-based algorithm to capture microplastics and nanoplastics

Article information

Article type
Paper
Submitted
04 May 2022
Accepted
11 Aug 2022
First published
12 Aug 2022

Analyst, 2022,147, 4301-4311

Raman imaging combined with an improved PCA/algebra-based algorithm to capture microplastics and nanoplastics

F. Cheng, Y. Luo and R. Naidu, Analyst, 2022, 147, 4301 DOI: 10.1039/D2AN00761D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements