Issue 8, 2022

Single-molecule analysis of genome-wide DNA methylation by fiber FISH coupled with atomic force microscopy

Abstract

DNA methylation (mainly at 5-methylcytosine, 5mC) plays an essential role in embryonic development and cellular biology. Alterations in DNA methylation are associated with disease development, especially hematologic malignancies. To investigate the potential of 5mC for diagnosis and treatment, accurate determination of 5mC is essential. Standard bisulfite sequencing-based methodologies or various optical/electrochemical biosensors for identifying 5mC have limitations, such as high cost, severe DNA degradation, over-estimation of the true 5mC level, being able to only display the average 5mC level, etc. Here we propose a single-molecule strategy for the direct identification of whole-genome 5mC by the combination of DNA fiber-based fluorescence in situ hybridization (DNA fiber FISH) and atomic force microscopy (AFM). Using extended DNA fibers and anti-5mC antibody for the detection of 5mC, it is possible to map the physical location of 5mC within the genome DNA. Together with AFM, this method can present the morphology of anti-5mC-DNA complexes and detailed spacing distribution of two neighboring 5mC sites on a single DNA molecule. Furthermore, this approach can be used for reporting other epigenetic modifications, not limited to 5mC or one single epigenetic modification. It can be anticipated to contribute to the development of clinical diagnosis of epigenetic-related diseases.

Graphical abstract: Single-molecule analysis of genome-wide DNA methylation by fiber FISH coupled with atomic force microscopy

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2022
Accepted
04 Mar 2022
First published
08 Mar 2022

Analyst, 2022,147, 1559-1566

Single-molecule analysis of genome-wide DNA methylation by fiber FISH coupled with atomic force microscopy

L. Bu, T. Luo, J. Yan, G. Li and J. Huang, Analyst, 2022, 147, 1559 DOI: 10.1039/D2AN00216G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements