Issue 9, 2022

A primer extension activating 3D DNAzyme walker for in situ imaging and sensitive detection of telomerase activity

Abstract

Acquiring information on telomerase activity at multiple levels contributes to a better understanding of its role in various physiological and pathological processes. Herein, a primer extension activating 3D DNAzyme walker is developed for in situ imaging and sensitive detection of telomerase activity. This walker is constructed via co-modifying specially designed hairpin structured walking strands and track strands on a gold nanoparticle (AuNP). The walking strand contains a pre-blocked DNAzyme sequence and a telomerase primer hybridized to its root. The track strand embeds at an RNA cleavage site and is labeled with the FAM group. After this walker is taken up by cells, the telomerase primer is extended under the action of endogenous telomerase to liberate DNAzyme. The liberated DNAzyme cuts track strands in the presence of the cofactor Mn2+ to drive the walker's processive operation, resulting in an enhanced fluorescence recovery of the AuNP-quenched FAM fluorophore. In situ imaging of telomerase activity in three different cell lines (MCF-7 cells, HeLa cells and HL-7702 cells) was well implemented. The discrimination of cancer cells from normal cells and the screening of telomerase inhibitors have been achieved. The sensitive detection of telomerase activity in HeLa cell lysate has also been realized with a detection limit of 10 cells. This walker performed a new approach for monitoring telomerase activity from different levels, providing a potential tool for clinical diagnosis, prognostic evaluation and drug screening.

Graphical abstract: A primer extension activating 3D DNAzyme walker for in situ imaging and sensitive detection of telomerase activity

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2022
Accepted
30 Mar 2022
First published
31 Mar 2022

Analyst, 2022,147, 1968-1975

A primer extension activating 3D DNAzyme walker for in situ imaging and sensitive detection of telomerase activity

X. Liu, L. Zhang, L. Lu, W. Jiang and N. Zhang, Analyst, 2022, 147, 1968 DOI: 10.1039/D2AN00142J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements