Issue 2, 2022

Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level

Abstract

DNA methylation plays key roles in various areas, such as gene expression, regulation, epigenetics, and cancers. Since 5-methylcytosine (5mC) is commonly present in methylated DNA, characterizing the binding kinetics and thermodynamics of the nucleotide to the enzymatic pocket can help to understand the DNA replication process. Furthermore, 5-carboxycytosine (5caC) is a form that appears through the iterative oxidation of 5mC, and its effect on the DNA replication process is still not well known. Here, we immobilized a DNA polymerase (DNAP) with an orientation control on a tip of an atomic force microscope (AFM), and observed the interaction between the immobilized deoxyguanosine triphosphate (dGTP) on the surface and the DNAP in the presence of a DNA duplex. The interaction probability increased as the concentration of the DNA strand, and the affinity constant between the DNAP and DNA was obtained by fitting the change. Increasing the concentration of dGTP in solution diminished the interaction probability, and a fitting allowed us to retrieve the affinity constant between dGTP and the DNAP holding the DNA in the reaction pocket. Because the dissociation constant could be obtained through the loading rate dependence of the unbinding force value, both affinity and kinetic constants for cytosine (C), 5mC, and 5caC in the DNAP were compared in the light of the steric and electronic effect of the substituents at 5-position of cytosine.

Graphical abstract: Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2021
Accepted
09 Dec 2021
First published
13 Dec 2021

Analyst, 2022,147, 341-348

Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level

J. Y. Lee and J. W. Park, Analyst, 2022, 147, 341 DOI: 10.1039/D1AN02108G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements