Issue 32, 2022

Charge transfer mediated triplet excited state formation in donor–acceptor–donor BODIPY: Application for recording of holographic structures in photopolymerizable glass

Abstract

Donor–acceptor–donor BODIPY triads bearing anthracene or pyrene as electron donating subunits were prepared through a stepwise synthesis. Photoinduced electron transfer and formation of long-lived triplet excited states via spin–orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe spectroscopy and further supported by DFT computations. New BODIPYs were found to form triplet states and sensitize singlet oxygen in both polar and non-polar solvents which is unusual for photosensitizers operating via SOCT-ISC. BODIPY-anthracene triad (ABA) was used as a photosensitizer component in a photopolymerizable glass that was prepared by a four-step sol–gel process. ABA in combination with N-phenylglycin (NPG) showed the ability to initiate a free-radical polymerization of methacrylate monomers under 532 nm irradiation thus allowing for holographic recording of diffractive structures. High diffraction efficiency (up to 87%) obtained for ABA-NPG containing glass as compared to a reference diiodo-BODIPY (I2BDP) demonstrates for the first time that heavy-atom-free SOCT-ISC photosensitizers can efficiently operate in the solid state.

Graphical abstract: Charge transfer mediated triplet excited state formation in donor–acceptor–donor BODIPY: Application for recording of holographic structures in photopolymerizable glass

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2022
Accepted
15 Jul 2022
First published
18 Jul 2022
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2022,10, 11588-11597

Charge transfer mediated triplet excited state formation in donor–acceptor–donor BODIPY: Application for recording of holographic structures in photopolymerizable glass

T. Mikulchyk, S. Karuthedath, C. S. P. De Castro, A. A. Buglak, A. Sheehan, A. Wieder, F. Laquai, I. Naydenova and M. A. Filatov, J. Mater. Chem. C, 2022, 10, 11588 DOI: 10.1039/D2TC02263J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements