Issue 21, 2022

A novel thermosensitive growth-promoting collagen fibers composite hemostatic gel

Abstract

As a feasible solution to massive blood loss in emergencies, ensuring the availability of absorbable exogenous topical hemostatic materials is a major current focus. Among the available materials, collagen is a surprising presence, but that does not mean that it is an ideal material from every aspect. Collagen fibers (CFs) and collagen have the same composition in terms of matter, but they have differing spatial structures and hierarchies. CFs can be directly seen as a slight advance on collagen, yet disadvantages relating to their mono-functionality and dosage form restrict their further utilization. It is worth noting that technology for extracting Bletilla striata polysaccharide (BSP), a natural derivative of Bletilla striata, is becoming more advanced. Based on extensive surveys and development studies, hydrogels can show extraordinary development flexibility. In particular, when it comes to wound adaptability and stimuli responsiveness, in situ gels show many advantages. Therefore, we introduced a collagen-based biocompatible and efficient thermosensitive hemostatic hydrogel material (COF). COF is a stable, safe, and bioactive material, and multiple characterization tests confirm this. Upon adjusting the ratios of different materials, COF-3, showing the most comprehensive performance, best in vitro hemostatic effects, good gelation speed, and good cell compatibility, was selected. COF-3 was applied during the in vivo hemostasis testing of a rat hemorrhage model, and COF-3 achieved hemostasis within 30 s. COF shows promising application and clinical potential, providing an effective route to the achievement of in vivo minimally invasive hemostasis and laying a solid foundation for the development of functional hemostatic gels.

Graphical abstract: A novel thermosensitive growth-promoting collagen fibers composite hemostatic gel

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2021
Accepted
22 Apr 2022
First published
25 Apr 2022

J. Mater. Chem. B, 2022,10, 4070-4082

A novel thermosensitive growth-promoting collagen fibers composite hemostatic gel

X. Yan, Y. Chen, N. Dan and W. Dan, J. Mater. Chem. B, 2022, 10, 4070 DOI: 10.1039/D1TB02644E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements