Issue 41, 2022

Mechanism and behavior of caffeine sorption: affecting factors

Abstract

Caffeine is one of the emerging pollutants with a diverse chemical composition. It is mixed with the hydrobiota as a result of its high consumption, and when certain dose intervals are exceeded, it re-enters the human body through indirect routes such as plants, animals, soil, water, and the food chain, causing health problems that are difficult or impossible to treat, and irreversible environmental problems. This situation raises concerns about the presence of pollutants emerging in water resources, igniting interest in water treatment processes and the development of alternative methods. Although there are several methods for removing caffeine from aqueous media, adsorption is the most popular because it is less expensive than other methods and has the highest removal efficiency. Furthermore, it has the benefit of selectively attaching the molecules in solution. In this article, studies on the caffeine adsorption process have been examined, and the caffeine adsorption efficiency of various adsorbents has been summarized by compiling information such as pH, contact time, temperature, and concentration of adsorbent and adsorbate, which are considered as optimum processing conditions. The binding mechanism was investigated, and it was clearly stated how caffeine adheres to the adsorbent surface. Among the equilibrium adsorption isotherms, the isotherm model with the best agreement with the experimental data was attempted to be determined. Many studies clearly show that the process of developing environmentally friendly and high-capacity adsorbents in sustainable processes and in harmony with the circular economy is increasing day by day.

Graphical abstract: Mechanism and behavior of caffeine sorption: affecting factors

Article information

Article type
Review Article
Submitted
20 Jul 2022
Accepted
06 Sep 2022
First published
16 Sep 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 26504-26513

Mechanism and behavior of caffeine sorption: affecting factors

M. Fakioğlu and Y. Kalpaklı, RSC Adv., 2022, 12, 26504 DOI: 10.1039/D2RA04501J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements